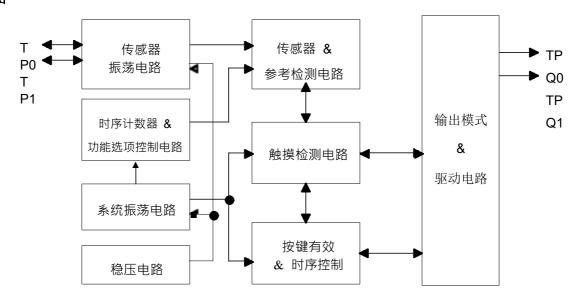


HY232C 2按键触摸检测 IC 规格书 Ver1.0

概述

HY232C IC 为电容感测设计,专门用于触摸板控制,装置内建稳压电路给触 摸感应电路使用,稳定的触摸检测效果可已广泛的满足不同的应用需求,人体经由非导体的介电材料连结控制板,主要用于取代机械开关或按钮,此芯片经由 2 个触摸板直接控制 2 个输出 脚。

特点


- ⊥ 工作电压 2.4V ~ 5.5V
- 1 内建稳压电路给触摸感应电路使用
- 工作电流 @VDD=3V, 无负载
- ı 待机时典型值为 2.5uA
- 工最大的触摸响应时间,从待机状态开始约为 220mS @VDD=3V
- I 利用每个触摸板外部的电容(1~50pF)调整灵敏度
- 输出模式固定为直接模式和低电平输出有效模式
- 」提供最长输出时间时间 16 秒
- 1 固定为多键输出模式
- L 上电后约有 0.5 秒的稳定时间,此期间内不要触摸触摸板,此时所有功能都被禁止
- 1 自动校准功能
- 1 刚上电的 8 秒内约每 1 秒刷新一次参考值,若在上电后的 8 秒内有触摸按键或 8 秒后仍未触摸 按键,则每 4 秒刷新一次参考值

应用范围

- 1 各种消费性产品
- 1 取代按钮按键

方块图

脚位定义

脚位顺序	脚位名称	I/O 类型	脚位定义
1	TPQ0	0	TPO 触摸输入脚位的 CMOS 输出脚位
2	VSS	Р	负电源供应,接地
3	TPQ1	0	TP1 触摸输入脚位的 CMOS 输出脚位
4	TP1	I/O	触摸板输入脚位
5	VDD	Р	正电源供应
6	TP0	I/O	触摸板输入脚位

接脚类型

 I
 CMOS 单纯输入
 I-PH
 CMOS 输入内置上拉电阻

 O
 CMOS 输出
 I-PL
 CMOS 输入内置下拉电阻

 I / O
 CMOS 输入 / 输出
 OD
 开漏输出,无二极管保护电路

P 电源/接地

电气特性

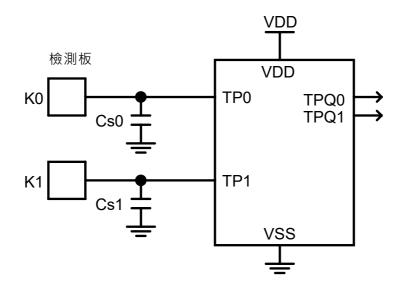
最大绝对额定值

参数	符号	条件	值	单位
工作温度	T _{OP}	-	-40∼+85	$^{\circ}$
储存温度	T _{STG}	-	- 50∼+125	$^{\circ}$
电源供应电压	VDD	Ta=25。 C	VSS-0.3∼VSS+5.5	V
输入电压	V _{IN}	Ta=25。 C	VSS-0.3∼VDD+0.3	V
芯片抗静电强度 HBM	ESD	_	5	KV

备注: VSS 代表系统接地

」 DC / AC 特性: (测试条件为室温 = 25 ℃)

参数	符号	测试条件	最小值	典型值	最大值	单位
工作电压	VDD		2.4	3	5.5	V
内部稳压电路输出	VREG		2.2	2.3	2.4	V
系统振荡频率	FFAST	VDD=3V	-	512K	-	Hz
<i>小礼派初外</i> 十	FLOW	VDD=3V	_	16K	_	
工作电流	I _{OP}	待机,VDD=3V 输出无负载	-	2.5	-	uA
输入埠	V _{IL}	输入低电压	0	-	0.2	VDD
输入埠	V _{IH}	输入高电压	0.8	-	1.0	VDD
输出埠灌电流 Sink Current	I _{OL}	VDD=3V, V _{OL} =0.6V	-	8	-	mA
输出埠源电流 Source Current	I _{OH}	VDD=3V, V _{OH} =2.4V	-	-4	-	mA
输出响应时间	T _R	VDD=3V、触摸操作时	_	_	60	mS
初 江河町/火火 中江 中]		VDD=3V、待机时	-	-	220	
输入脚位上拉电阻	R _{PH}	VDD=3V	-	30K	-	ohm


功能描述

I. 灵敏度调整

PCB 上接线的电极大小与电容之总负载,会影响灵敏度,故灵敏度调整必须符合 PCB 的实际应用。HY232C 提供一些外部调整灵敏度的方法。

- 1. 调整检测板尺寸的大小
 - 在其他条件不变的情况下,使用较大的检测板尺寸可增加灵敏度,反之则会降低灵敏度;但电极尺寸必须在有效范围内使用。
- 2. 调整介质(面板)厚度
 - 在其他条件不变的情况下,使用较薄的介质可增加灵敏度,反之则会降低灵敏度;但介质厚度必须在最大限制值以下。
- 3. 调整 Cs0~Cs1电容值(请参阅下图)

在其他条件不变的情况下,加上电容器 $Cs0\sim Cs1$ 后,可微调单键的灵敏度,然后让所有按 键的灵敏度一致;若未在 VSS 上接上 Cs 电容时,灵敏度是最灵敏的,加上 $Cs0\sim Cs1$ 值 会降低可用范围内的灵敏度($1\leq Cs0\sim Cs1\leq 50\, pF$)。

II. 输出模式

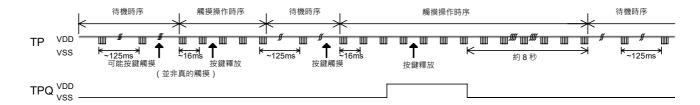
HY232C 输出(TPQ0~TPQ1) 固定为直接模式和低电平有效模式。

Ⅲ. 按键最长输出时间

若有物体盖住感测板,可能造成足以侦测到的数量变化,为避免此情况,HY232C 设有计时器检测器进行监控,计时器为最大输出持续时间约16秒;当检测到超过计时器时间,系统会回到上 电初始状态,且输出变成无效,直到下一次检测。

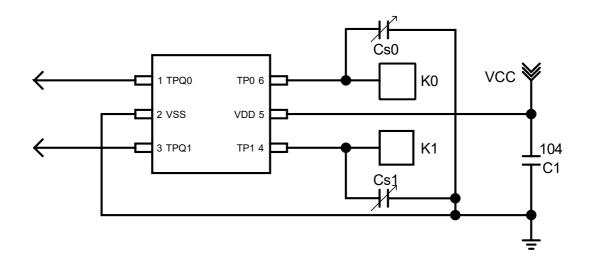
IV. 按键操作模式

HY232C 固定为多键功能。


多键模式:可同时侦测到TP0-TP12个按键。

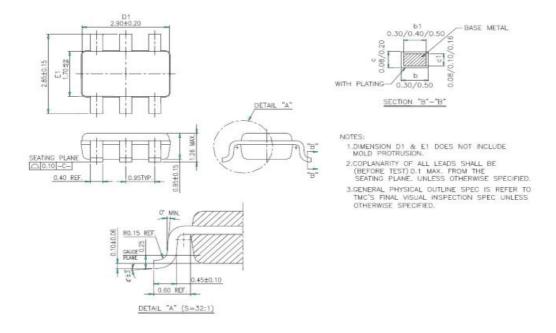
V. 触摸响应时间

HY232C 的触摸响应时间约 220msec 从待机状态开始。


VI. 按键扫描的工作时序

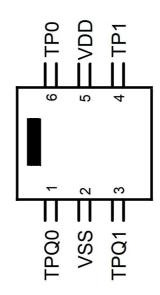
按键扫描状态与时序

应用电路



P.S.:

- 1. 在 PCB 上,从触摸板到 IC 接脚的线长越短越好。 且此接线与其它线不得平行或交叉。
- 2. 电源供应必须稳定,若供应电源之电压发生飘移或快速漂移或移位,可能造成灵敏度异常或误侦测。
 - 3. 覆盖在 PCB 上的板材,不得含有金属或导电元件的成份,表面涂料亦同。
 - 4. 必须在 VDD 和 VSS 间使用 C1 电容;且应采取与装置(HY232C)的 VDD 和 VSS 接脚最短 距离的布线。
 - 5. 可利用 Cs0~Cs1 电容调整灵敏度, Cs0~Cs1 的电容值越小灵敏度越高, 灵敏度调整必须根据 实际 应用的 PCB 来做调整, Cs0~Cs1 电容值的范围为 1~50pF。
 - 6. 调整灵敏度的电容(Cs0~Cs1)必须选用较小的温度系数及较稳定的电容器;如 X7R、NPO,故针 对触摸应用,建议选择 NPO 电容器,以降低因温度变化而影响灵敏度。


封装外观尺寸

封装配置

HY232C

封装类型 SOT23-6

